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Factorize calculations:

= pQCD to calculate c-cbar production
= c-cbar propagation and Hadronization

= Some heavy flavor production at RHIC dominated by gg interactions — gluon probe
= Generated in initial hard collisions — present from t, to probe of medium

= High mass — pQCD calculable, map out medium interactions vs. quark mass

= Medium Interactions (color screening, breakup & reformation
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Heavy flavor particles provide unique probe of QGP, but careful systematic

study of production must be undertaken to pull out QGP-specific effects.

Cold Nuclear Matter
Hot Nuclear Matter
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Extracting QGP properties from A+A collisions requires understanding of:

= Superposition of nucleon-nucleon collisions plus:

= PDF modification inside a nucleus?

= Does multiple scattering, energy loss of incoming partons traversing a nucleus significantly

modify particle production? Absorption in nucleus?

= Extrapolation from d+A to A+A

» Finally, how does the QGP affect particle production:
» Energy loss of the partons
= |s formation altered because of medium: particles screened, or broken up and reformed?
= What role does recombination play?

Melynda Brooks, LANL




SERIEE VP

“‘"‘.--;')‘ﬂ Al WY S

g O
Tl

Heavy Flavor in p+p — baseline cross sections needed for AA, comparison to
theory

Rya, IN d+Au — is production modified by cold nuclear matter
= Rapidity dependence — shadowing, energy loss
= p; dependence — multiple scattering

R,a IN A+A — Is production modified beyond cold nuclear matter effects in AA
collisions?
= Rapidity, p;, quark mass dependence can help determine whether
model of cold nuclear matter and QGP effects can reproduce all
spectra
= Similarly for flow
= Heavy flavor and quarkonia simultaneously modeled

Simultaneous modeling of all together likely needed to pull out any one
component

Melynda Brooks, LANL
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= Hadronic decay modes allow full reconstruction of D mesons

= Preferred, but combinatorics issues, PID needed, statistically
limited

-

(13.80 + 0.07 )%
(114 + 012 )%

= Semi-leptonic decays offer large branching ratios

= Challenging to remove background, D/B kinematics inferred,
D/B separation often not possible

D meson Inclusive modes
e™ anything ] (671 £ 029)%
1T anything (65 £07 )%
= Also e-hadron correlations, ete-
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» Di-lepton mass peaks must be separated from
di-lepton physics backgrounds + combinatorial
background

p+p at\'s = 200 GeV 2" B eilgeros
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» Global Beam-Beam and
Zero-Degree Calorimeter to
give vertex, centrality

= Tracking chambers, RICH,
EM Calorimeter to give
Electron ID

= Tracking + B-field — p

= Time of Flight for PID

= ly| < 0.35

a

RING IMAGING
CHERENKOV
DETECTOR

» Forward absorbers and
Tracking to give Muon ID

» Tracking + B-field — p

»1.2<|y|<2.4
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(e +e)i2 (-)-ly charged track production at = -1.65
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Deconvolute single e spectrum to extract heavy [ P+P\'s = 200 GeV
flavor component

Same for single muon spectrum

Cross section vs. p, rapidity extracted
Results consistent with expectations, rapidity
dependence poorly constrained
Upgrades program will significantly improve
error bars

= PHENIX electrons
0.0014 (PRL 97, 252002)

* PHENIX muons
0.0012 == preliminary

~

>1.0(mb)
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" p+p p; Spectra extracted JSYE — — Armesto etal. ()

= Au+Au extracted . [ ] vanHeesetal.(ll)
= R =_ dN/dpr by, . 3/(2rT) Moore &
AA N.udN /1dE; |, 12/(2rT) Teaney (Ill)

= Elliptic flow, v,

= | arge suppression relative to
binary scaling - Surprise

= Relatively large flow - Surprise

= Uncertainty in c/b contributions
complicates interpretation

2

® PHENIX Final Run4 Evan Hees et al
® PHENIX Preliminary Run7 )

minimum-bias

Heavy Flavor Electron v

*PRLI98, 172301
Melynda Brooks, LANL
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= |s there significant collisional energy
loss?

» Does short formation time allow for
collisional dissociation?

D B

Tform (pT =1O GeV)
25fm 1.6fm 0.4fm

= Can a consistent energy loss and flow
model describe all the data?

= Want to separate D/B and get higher
precision data

Melynda Brooks, LANL
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p+p @\s=200 GeV

electron P, 2~3 GeV/c hadron P, 0.4~5 GeVic

» Use correlated e-K to extract
charm:beauty ratio versus p-

» [nvariant mass distribution different for
charm/beauty

» Fit two components to real data and
extract c:b

data (RUNS) PH\/E‘NIX

simulation (charm) Preliminary

) in PHENIX ACCEPTANCE

e Beauty becomes dominant ~ >3.5 GeV

p+p \'s=200 GeV

s PHENIX (RUNS&6) [y] <0.35 CDF p*p...
e PHENIX (RUNS) |y| <0.35 E corrected)
e FONLL y=0 E G
FONLL maximum band y=0
e FONLL minimum band y=0 I HENIX p+p

spectra
_.~H||di-electron
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Dielectron invariant mass measured in p+p and Au+Au

Compared to cocktail of all known sources

p+p data agree very well with cocktail

Au+Au data show centrality-dependent enhancement in 150 MeV < m
< 750 MeV region

Thermal photons contributing to excess?

1 | '
%" min. bias Au+Au at \[s,, = 200 GeV
L = DATA > yee JIY > ee
102 . Iyl <0.35 -« > yEE Y ee -
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» p+p and d+Au J/ip measurements give baseline measurement for A+A
plus measurement of cold nuclear matter modifications to production
» Rapidity dependence sensitive to gluon shadowing

= Some forward/backward rapidity modification found w.r.t p+p,

consistent with some shadowing plus JAp absorption
60 T e R

— EKS Q=5.4 GeV/c
— EKS Q=14.7 GeV/c
" — FGS Q=5GeVic
— FGS Q=10GeV/c

\
Global scale uncertainty: 10.1% i . + 11% Global Scale Uncertainty -
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> Jhy ] 1 25'NRQCD (CTEQGM) A . —
Double Gaussian | = BestFito,,,, =28, mb
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t

Rapidity

*pp: PRL98,232002, dAu: PRC77,024912
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= JAhp d+Au extrapolated to Au+Au and compared to
measurements

= Additional suppression found, especially at
forward rapidity

= Would different CNM extrapolation give different
rapidity dependence? Is recombination at play?

+ 11% Global Scale Uncertainty

Central Rapidit

—pe PHENIX Aupr A Darta [pf«0 35 (syst

CKS Sadowing » 0, o® 2835,
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50 100 150 200 250 300 350 400
Number of Participants Au+Au Number of Participants Au+Au
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= [f open heavy flavor shows strong flow, and coalescence
contributes significantly to J/p formation, should see J/ip flow

= Current data cannot distinguish models, but higher statistics
could provide valuable information
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= Additional quarkonia measurements could constraint screening

= Jhp : ’ ratio extracted at central rapidity in p+p

= Same extracted for . using x.—~Jpy — e*ery

* Production ratios consistent with previous measurement extrapolations
= Not enough statistics to perform detailed ’, x. analyses

= Upgrades program will help
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* Improved background rejection in semi-leptonic decay
measurements would allow systematic errors to be reduced

= Separation of charm/beauty allows quark mass dependence to be
mapped out

» Add additional quarkonia measurements with improved mass
resolutions, background rejection, added acceptance

e . (~)-ly charged track production at n = -1.65
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Silicon Vertex Trackers (VTX and FVTX)
= Displaced vertex tagging of D, B decay products
= Direct D reconstruction
= P’ upsilons @ -
Nosecone Calorimeter (NCC) ¢
" Xec
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Silicon Vertex Trackers (FVTX and VTX)
= much improved heavy flavor — e, u measurements
= Direct D reconstruction from hadronic decay
= P’ upsilons
Nosecone Calorimeter (NCC)
| XC
» Energy loss mechanisms in QGP understood
= Recombination contributions to quarkonia production better constrained
= Screening of quarkonia mapped out

VTX Detector

4.2 Trackers + Calorimeter
14

Charm+beauty with FVTX(pp: 70pb™; AuAu: 2nb™) . v cthoe

1 DGLYV c+b dN/dy =1000 . vy boe . ‘.

X2 My -
Collisional Dissociation " CHe
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Current:
= Large heavy flavor suppression in Heavy lon Collisions - Why?
= Significant open heavy flavor elliptic flow, J/p uncertain
= Large Jhp suppression, but surprising rapidity dependence
= Cold Nuclear Matter modification to production seen, but
components poorly constrained

Future:
= New d+Au results from RHIC Run 8 - CNM constrained
= Significantly reduced systematic errors on heavy flavor —
) separation of suppression mechanisms
= Higher statistics, improved Jhp — does Jhp flow?, is

recombination playing significant role in production?
= New quarkonia measurements — screening pattern revealed

Melynda Brooks, LANL




